Principles of Wheel-Rail Friction Management

Jon Paragreen,

Head of Applications, Europe

L.B. Foster Rail Technologies Ltd, UK

Contents

- 1. What is Friction Management?
- 2. Benefits of Friction Management.
- 3. Application of Rail Gauge Face and Flange lubrication.
- 4. Application of Top of Rail Friction Modifiers.
- 5. Application of Traction Enhancers
- 6. Standards
- 7. Properties of different Friction Management products.

What is Friction management?

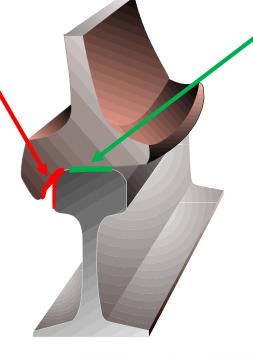
Friction management using solid or fluid (oil, grease, etc) substances at the wheelrail interface is a complex subject and includes:

- lubrication of the wheel flange / rail gauge corner interface, commonly referred • to as "flange or rail lubrication";
- lubrication of the back of flange/ check rail interface, commonly referred to as • "check rail lubrication";
- altering the level of friction at the interface between the top of rail and the wheel ٠ tread, commonly referred to as "top of rail friction management";
- applying materials to the wheel rail contact to increase (improve/ enhance/ • recover) adhesion.

EN15427-1-1 (2022)

PRINCIPLES COURSE · JUNE 22

Benefits of lubrication and top of rail friction modifiers


Gauge Face / Wheel Flange

Benefits:

JB0

- Reduced Rail / Wheel Wear
- Improved Fuel Efficiency
- Lowers Derailment Potential
- Mitigates RCF Development
- Reduced Flange Noise

Target CoF: < 0. 15

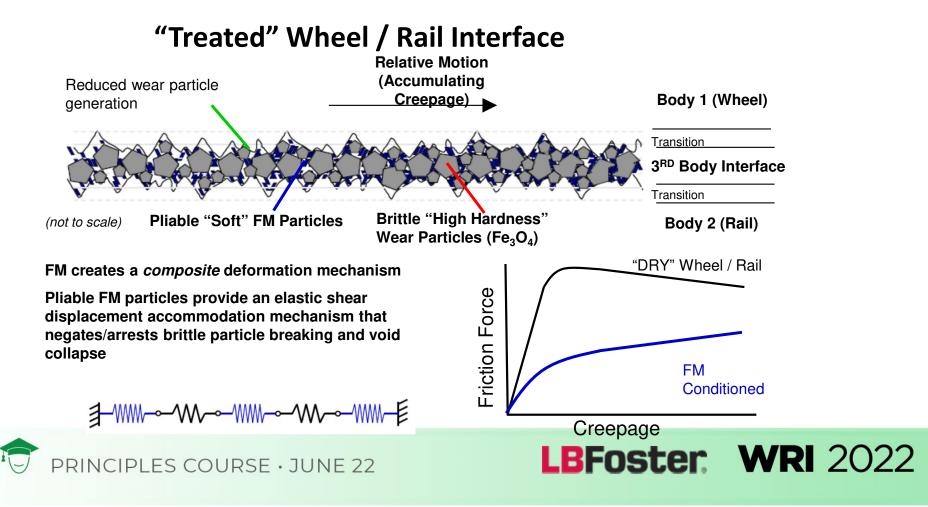
Top-of-Rail / Wheel Tread

Benefits:

- Reduced Rail / Wheel Wear
- Improved Fuel Efficiency
- Reduced Lateral Forces
- Lowers Derailment Potential
- Mitigates RCF Development
- Reduces Hunting
- Mitigates Noise
- Mitigates Corrugations

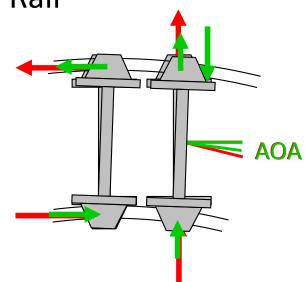
Target CoF: ~0.35

CoF = Coefficient of Friction



PRINCIPLES COURSE · JUNE 22

LBFoster: WRI 2022


JB0 missing corrugation from TOR benefits Jackie Butterfield, 2022-06-15T14:49:42.642

Top of Rail Fundamentals

- 1. High AoA Generated (Sharp Curves)
- 2. Top of Rail applied to High and Low Rail
- 3. Reduced creep forces
 - **Reduced lateral forces**
 - **Reduced AoA**
 - Improved steering

Benefits of traction enhancers

• Traction enhancers

Traction enhancers

Benefits:

 Restored traction and braking performance in very low adhesion conditions eg leaf fall.

Segmentation of Friction Management

• The Targeted Location:

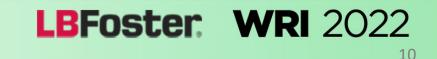
- Top of Rail/Wheel Tread
- Gauge Face/Wheel Flange
- The Application:
 - Trackside
 - On-Board

PRINCIPLES COURSE · JUNE 22

Friction Management

		APPLICATION METHOD		
		Trackside	On-Board	
LOCATION	Top of Rail / Wheel Tread Friction Modifiers	 Water based friction modifiers Hybrids Top-of-Rail (TOR) Oils (petroleum/non petroleum) 	 TOR Friction Modifier Spray Solid Friction Modifier Wheel Tread Application 	
APPLICATION LC	Gauge Face / Wheel Flange Lubrication	- Gauge Face (GF) Greases	 Solid Lubricants for Wheel Flange Application On-Board Oil Spray 	
	Traction enhancers	- Traction gels	 Sand Traction gels Innovative cleaning tech 	

PRINCIPLES COURSE · JUNE 22


JB0

JB0	rail/wheel diagrams just need tidying upas on the previous page
	Jackie Butterfield, 2022-06-15T14:53:27.852

- Trackside
 - How to apply product to gauge face/corner of the rail?
 - Applicator bars
 - Drilled rail
 - Squirting systems

• Trackside – applicator bars

11

11

• Trackside – drilled rail – typically only for embedded rail

LBFoster: WRI 2022

• Trackside – squirting systems

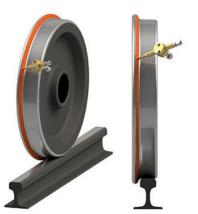
LBFoster: WRI 2022

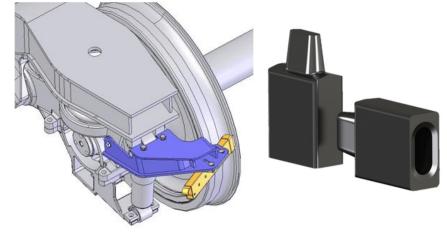
• Trackside – Electric – solar or mains powered

LBFoster: WRI 2022

Trackside – Hydraulic and Mechanical

- Trackside
- **Single Point lubricators**




LBFoster: WRI 2022

• On-board

Oil spray system

Solid lubricating sticks

Application of Top of Rail Friction 18 modifiers

Trackside electric applicators

Applicator bars

PRINCIPLES COURSE · JUNE 22

Application of Top of Rail Friction ¹⁹ modifiers

• On-board

Spray systems

Tread sticks

Application of traction enhancers

• Trackside – application of traction gel

LBFoster: WRI 2022

Application of traction enhancers

• On-board

Train sanders

Traction gel application from specialist vehicles

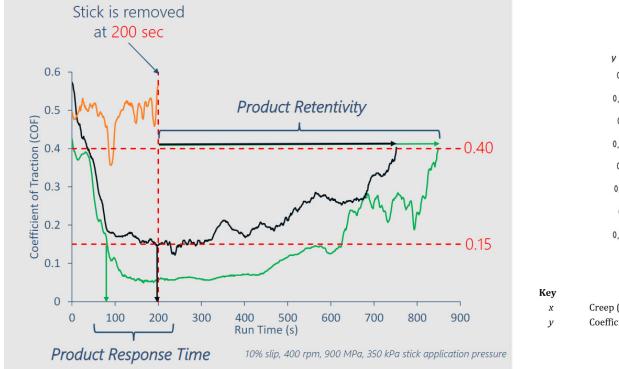
Lubricant properties

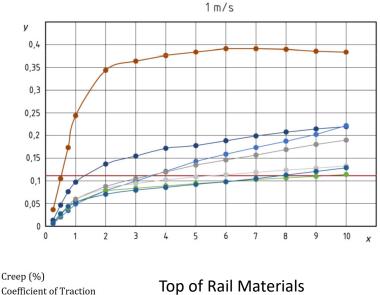
Property	Grease	On-board Flange oil	On-board Stick
Lubricity			
Retentivity			
Spray pattern			
Reaction time			
Stick consumption rate			
Stick hardness – mechanical strength			
Thickness –strength for applicator bars (temperature range)			
Pumpability (at temperature range)			
Oil separation			
Pick-up and carry down			
Biodegradability/environmental impact			

PRINCIPLES COURSE · JUNE 22

MTM, Twin disc testing and full scale testing

- Lubricity
- Retentivity
- Reaction time
- Stick consumption rates





LBFoster: WRI 2022

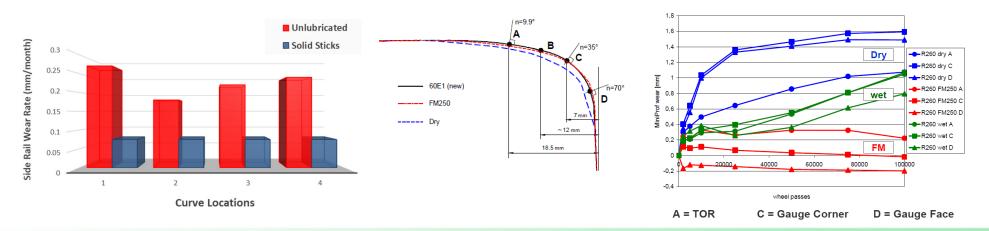
MTM and Twin disc testing

Grease hardness/Stiffness

- Penetration test
- Hand pump and bar

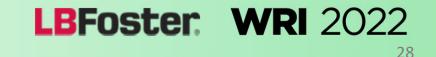
On-track testing

- Lubricity tribometer
- Pick up and carry down



On-track/On-vehicle testing

Wear
 measurements

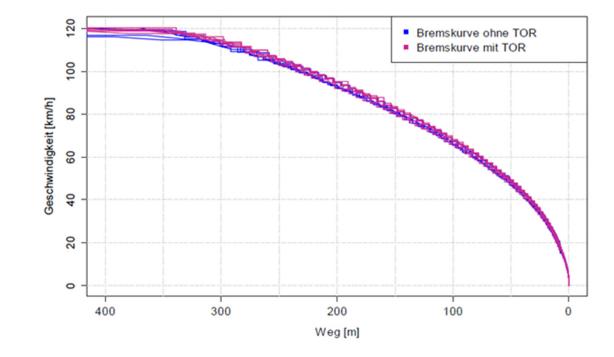

On-track/On-vehicle testing

Consumable

consumption rates

Solid stick mechanical strength and ²⁹ thermal stability

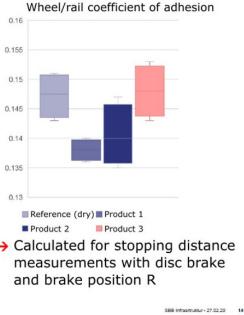
LBFoster: WRI 2022


Top of Rail properties

		_
Liquid Top of Rail - trackside	Liquid Top of Rail - onboard	On-board Stick

PRINCIPLES COURSE · JUNE 22

Braking and traction trials

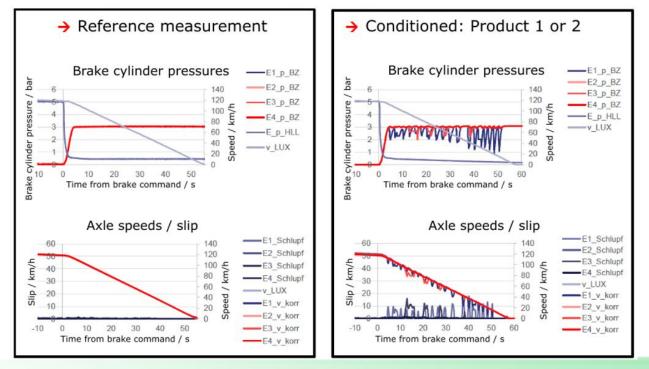


LBFoster: WRI 2022

Braking and traction trials

		Product 1	Product 2	Product 3	Wheel/rail coe
				riouuce 5	0.16
-	xtension of the 115km/h (E-t				0.155
Block brake	R	Unchanged	Unchanged	Unchanged	0.15
Disc brake	R	+7%	+7%	Unchanged	0.145
DISC DIAKE	R+Mg*	+11%	Unchanged	Unchanged	0.14
Electro- dynamic brake	E	+34%	+39%	+4%	0.135
Percentage e (target speed	xtension of the 120km/h)	e acceleration	time		■ Reference (dry) ■ Product 2 → Calculated fo
Trailer load: 87t		~ +24%	~ +18%	Unchanged	measuremen and brake po
Trailer load: 111t		~ +54%	~ +48%	Unchanged	

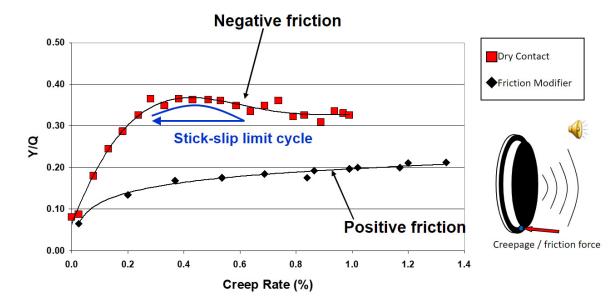
Ref. Zbinden, Franziska, Dipl.-Ing. Zoller, Roman / Leibundgut, Daniel, Schönholzer, Urs, Dr. sc. techn., SBB, Schienenkopfkonditionierung, Internationale Schienenfahrzeugtagung Dresden, 2020



Braking and traction trials

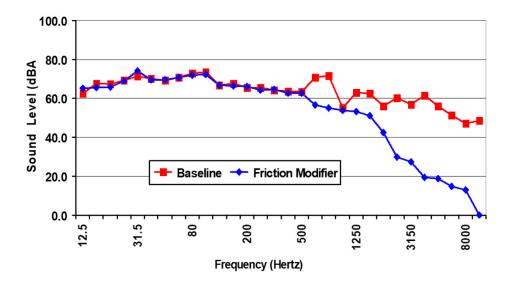
Results vehicle control

Example of a disc brake, brake position R



PRINCIPLES COURSE · JUNE 22

Top of Rail Squeal

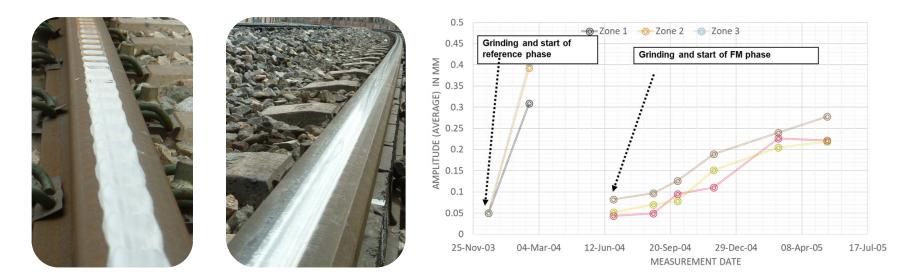

- Positive friction characteristics
- Measurement on track

Noise

Noise Type	Frequency range [Hz]
Rolling	30 – 2500
Rumble (including corrugations)	200 – 1000
Flat spots	50 – 250 (speed dependant)
Ground Borne Vibrations	30 – 200
Top of rail squeal	1000 - 5000
Flanging noise	5000 - 10000

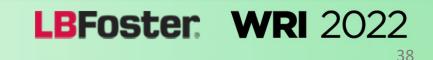
Noise

Baseline – **No TOR FM** application

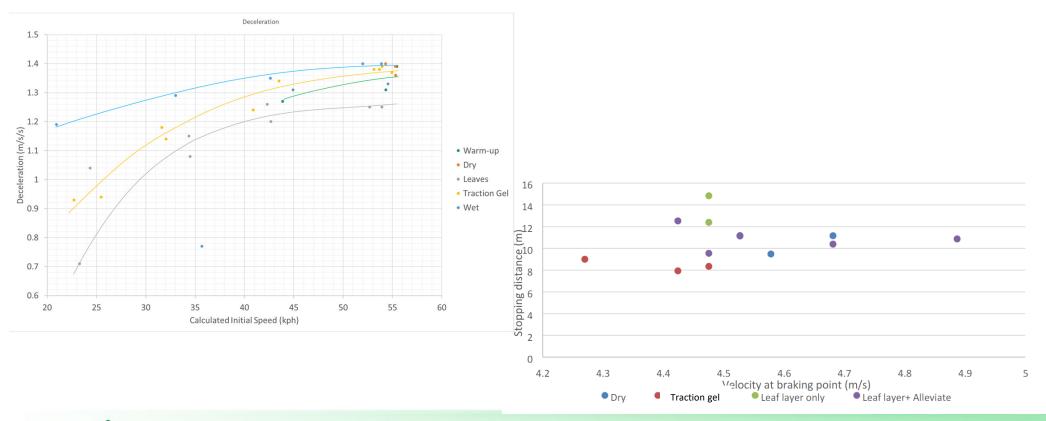

AFTER TOR FM application - manual

On-track/vehicle testing

• CAT – Corrugation analysis trolley


Traction Enhancer properties

- General
 - Traction enhancing properties friction measurement
- Traction gels
 - Product stability
 - Pumpability
- Traction particles
 - Particle flowability
 - Particle size, shape and structure



PRINCIPLES COURSE · JUNE 22

Traction enhancer braking trial

LBFoster: WRI 2022

Standards related to friction management

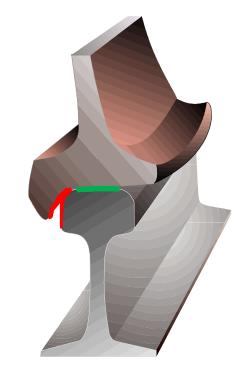
CEN European Standards

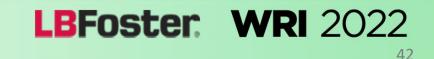
- EN15427-1-1:2022— Part 1-1: Equipment and Application Flange lubrication
- TS15427-1-2:2021 Part 1-2: Equipment and Application Top of Rail materials
- TS15427-1-3:2021 Part 1-3: Equipment and Application Adhesion materials
- EN15427-2-1:2020— Part 2-1: Properties and Characteristics Flange lubricants (supersedes EN16028)
- TS15427-2-2:2021— Part 2-2: Properties and Characteristics Top of Rail materials
- TS15427-2-3:2021— Part 2-3: Properties and Characteristics Adhesion materials
- prTR15427-3 Part 3: Technical report

Standards related to friction

management

National standards/railway undertakings standards eg:


- Network Rail NR/L3/TRK/3530 Track Lubricants, NR/L3/TRK/003/TEF3219
- Swiss Standard R RTE 49410 Spurkranzschmierung Eisenbahnfahrzeuge Normalspur
- Australian Standard RISSB AS 7641:2017 Rail Gauge Corner Lubrication Management for friction levels and measurement
- Metro Trains Melbourne L1-CHE-STD-033 ENGINEERING STANDARDRAIL LUBRICATION STANDARD
- Transport for New South Wales T HR TR 00111 S Rail Lubrication



Summary

- Friction management reduce damage to wheel/rail, reduce fuel consumption and noise
- Wide range of products with different properties and application methods
- Laboratory measurements and track testing can help select optimal solution
- Range of standards available to guide selection

Questions

